Posts Tagged ‘kettering’

Soy supplementation adversely effects expression of breast cancer-related genes

The impact of soy consumption on breast cancer prevention and treatment is not clear although many women believe soy supplementation is beneficial based primarily on results from epidemiological studies. Moshe Shike, M.D., from the Department of Medicine at Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College in New York, NY, and colleagues conducted a randomized placebo-controlled study of the effects of soy supplementation on gene expression and markers of breast cancer risk among women diagnosed with invasive breast cancer. The study, run between 2003 and 2007 at Memorial Sloan-Kettering, enrolled a total of 140 patients who were randomized to either soy supplementation (soy protein) or placebo (milk protein), which lasted from the initial surgical consultation to the day before surgery (range=7-30 days). Tumor tissues from the diagnostic biopsy (pre-treatment) and at the time of resection (post-treatment) were then analyzed. They observed changes in several genes that promote cell cycle progression and cell proliferation among women in the soy group.

The authors conclude, “These data raise concern that soy may exert a stimulating effect on breast cancer in a subset of women.”

In an accompanying editorial, V. Craig Jordan, O.B.E., D.Sc., Ph.D., FMedSci, from the Department of Oncology at the Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, discusses how timing of soy supplementation is critical and reviews the evidence in the literature on phytoestrogens, which are contained in soy, and their known action in breast cancer. He writes, the study by Shike et al. “…illustrates the dangers of phytoestrogen consumption too soon, around menopause, but the biology of estrogen in estrogen-deprived conditions suggests that phytoestrogen could have benefit a decade after menopause.” He cautions that appropriate doses of soy and timing of consumption are critical considerations.

source : http://www.sciencedaily.com/releases/2014/09/140904183725.htm

Newest precision medicine tool: Prostate cancer organoids

The researchers, whose results were published today in Cell, successfully grew six prostate cancer organoids from biopsies of patients with metastatic prostate cancer and a seventh organoid from a patient’s circulating tumor cells. Organoids are three-dimensional structures composed of cells that are grouped together and spatially organized like an organ. The histology, or tissue structure, of the prostate cancer organoids is highly similar to the metastasis sample from which they came. Sequencing of the metastasis samples and the matched organoids showed that each organoid is genetically identical to the patient’s cancer from which it originated.

“Identifying the molecular biomarkers that indicate whether a drug will work or why a drug stops working is paramount for the precision treatment of cancer,” said Yu Chen, MD, PhD, Assistant Attending Physician in the Genitourinary Oncology Service and Human Oncology and Pathogenesis Program at MSK. “But we are limited in our capacity to test drugs — especially in the prostate cancer setting, where only a handful of prostate cancer cell lines are available to researchers.”

With the addition of the seven prostate cancer organoids described in the Cell paper, Dr. Chen’s team has effectively doubled the number of existing prostate cancer cell lines.

“We now have a new resource at our disposal that captures the molecular diversity of prostate cancer. This will be an invaluable tool we can use to test drug sensitivity,” he added.

The use of organoids in studying cancer is relatively new, but the field is exploding quickly according to Dr. Chen. In 2009, Hans Clevers, MD, PhD, of the Hubrecht Institute in the Netherlands demonstrated that intestinal stem cells could form organoids. Dr. Clevers is the lead author on a companion piece also published in Cell today that describes how to create healthy prostate organoids. Dr. Chen’s paper is the first to demonstrate that organoids can be grown from prostate cancer samples.

The prostate cancer organoids can be used to test multiple drugs simultaneously, and Dr. Chen’s team is already retrospectively comparing the drugs given to each patient against the organoids for clues about why the patient did or didn’t respond to therapy. In the future, it’s possible that drugs could be tested on a patient’s organoid before being given to the patient to truly personalize treatment.

After skin cancer, prostate cancer is the most common cancer in American men — about 233,000 new cases will be diagnosed in 2014. It is also the second leading cause of cancer death in men; 1 in 36 men will die of the disease.

Despite its prevalence, prostate cancer has been difficult to replicate in the lab. Many mutations that play a role in its growth are not represented in the cell lines currently available. Cell lines can also differ from their original source, and because they are composed of single cells, they do not offer the robust information that an organoid — which more closely resembles a living organ — can provide.

source : http://www.sciencedaily.com/releases/2014/09/140904131142.htm